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Abstract

This paper presents a way to turn interaction history tree models [Maa03] into counterfactual
models that can be used to choose actions for an autonomously exploring learning system.

1 Introduction

.

2 Preparations

For this paper we need to expand the definitions as presented in [Maa03] a bit. Lets do a
brief recap.

The set B := {0, 1} is the set of binary digits, or bits. B∗ is the set of all finite bit sequences.
We denote the empty sequence (a sequence of zero bits) as ε ∈ B∗. For a, b ∈ B∗ we denote
the concatenation of a and b by ab. For sets A,B ⊆ B∗ we define AB := {ab | a ∈ A, b ∈ B}.
Furthermore we define A0 := {ε}, An+1 := AnA, and A∗ :=

⋃
n∈NA

n. We denote the
cardinality of a set A by |A|, so we can write ‘A is finite’ as |A| < ω.

Let X and Y be prefix-free subsets of B∗. (See [LV92] for an account of prefix-free sets.)
The set X lists the input words that the learning subject can expect to receive from its
environment. The set Y lists the output words that the learning subject can produce. Output
words are also called actions, input words are also called responses. We define the set of events
E := Y X. Note that E is prefix-free.

We will need a suffix relation that respects words or events (remember that a prefix-free set
is not necessarily suffix-free). We define for a set A ⊆ B∗ that a bit sequence s is an A-suffix
of a bit sequence a if and only if there is a p ∈ A∗ such that ps = a. Notation a wA s.

As in [Maa03] we define the set of interaction histories as H := E∗Y . For each h ∈ H and
g ∈ E∗ we call gh an extension of h. Note that gh wE h. If g 6= ε then we call gh a proper
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extension of h. If g ∈ E we call gh an immediate extension of h. Note that we extend histories
to the left to indicate that longer histories tell us something about the more distant past.

Our models of the environment are based on trees of interaction histories. The class of
interaction history trees is defined as:

T := {T ⊆ H | 1 ≤ |T | < ω ∧ ∀g ∈ E∗, h ∈ H[gh ∈ T → h ∈ T ]} (1)

In this paper there will be a number of occasions when we want to assign weights to the
members of a set in such a way that the complete set of weights has a finite description.
Sometimes these weight are to be interpreted as a probability distribution over the set, at other
places we need the weights to be simple natural numbers that encode how often something
has happened, and sometimes we need the weights to be rational numbers that represent
utilities of available alternatives. To generalize these situations we define the class of weight
assignments for a countable set A as

WA :=
{
f : A→ Q

∣∣∣ |{a ∈ A | f(a) > 0}| < ω ∧ ∀a ∈ A[f(a) ≥ 0]
}

(2)

A weight function f ∈ WA is well-defined if there is at least one a ∈ A such that f(a) > 0. If
f ∈ WA is well-defined, then it corresponds with a probability distribution over A:

pf (a) :=
f(a)∑

w∈A

f(w)
(3)

The class of interaction tree models is defined as:

M := {ψ : T →WX | T ∈ T } (4)

A tree model ψ ∈M is well-defined if and only if ψ(h) is well-defined for every h ∈ Dom(ψ).

3 Policies

In this paper the emphasis is on policies for the learning subject rather than models of the
environment. However, there is an interesting duality between the two. We just need to
reverse the roles of X and Y . Recall that we defined the set of events E as Y X. We now
define the set of reactions R as XY . We also define a slightly shifted analogs of H and T :
H ′ := R∗X and

T ′ := {T ⊆ H ′ | 1 ≤ |T | < ω ∧ ∀g ∈ R∗, h ∈ H ′[gh ∈ T → h ∈ T ]} (5)

We can now define the class of policies as:

P := {π : T →WY | T ∈ T ′} (6)
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4 Quick gains

We would like to let a learning subject maximize the growth of its model of the environment.
In this section we look at a local utility function that will be extended in the next section.
Let ht ∈ E∗ denote the complete history of the interactions between the learning subject and
its environment so far. Let y ∈ Y be a candidate action. Determine the longest suffix of hty
that is contained in T . Formally, let h ∈ T such that

hty wE h ∧ ∀h′ ∈ H[(hty wE h′ ∧ h′ wE h) → h′ 6∈ T ] (7)

We call h the state of the interaction given hty.

Let x̂ ∈ X such that
∀x ∈ X[(ϕ(h))(x) ≤ (ϕ(h))(x̂)] (8)

Now determine t, n ∈ N+ such that if the environment would respond with x̂ the first t times
that the learning subject would find itself in state h, then the first t−1 times the description
length of ψ would not change and the last time it would increase by n bits.

For h′ ∈ E∗ with h′y = h we define a local utility function u′h : Y → Q by

uh′(y) = n/t (9)

TODO: solve dependency of h′ on y

This can be easily turned into a policy by defining for r ∈ R∗ x, x′ ∈ X and y ∈ Y

(π(xyr))(x′) := uyr(x′) (10)

5 Definition of counterfactual models

In the previous section we saw that simple local optimization of actions will not result in
a remarkable learning speed. If we want to do better we need to look further ahead than
the single next event. The immediate question that arises is: how far do we have to look?
It is tempting to formulate some ideal optimality criterion based on all infinite sequences of
possible future interaction, but that is not going to help us build a working system. One of
us has considered to define a utility function on the stationary distribution that arises from
the current model of the environment and the variable policy and then optimize this function
when varying the parameters of the policy. However, this turns out to be computationally
challenging too.

So we tried another angle: lets define a data structure that can be maintained incremen-
tally, like history tree models, and that enables the learning subject to do reasonably cheap
forecasts of some utility function based on the current state of the interaction with the en-
vironment: the counterfactual model. The term ‘counterfactual’ is borrowed from Gödel,
Escher, Bach [Hof79]. Counterfactual models are about sequences of events that are not
facts, but they are not completely arbitrary either. Just like the definition of interaction
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history models we begin by defining sets of sequences of words that will be used to define the
domain of the models. Let ϕ : T →WX be a model of the environment. The counterfactual
base corresponding to T is defined as:

CT := {g ∈ E∗ | ∃h ∈ T [gh ∈ T ∧ `(h) < `(g)] (11)

Where `(a) is the number of words in a (i.e., a member of E counts as two words).

We define the counterfactual range corresponding to T as ρT := CT → ℘(T ) such that

ρT (g) = {h ∈ T | gh ∈ T ∧ `(h) < `(g)} (12)

Finally, we define the counterfactual model corresponding to ϕ as function γϕ : CT → WT

that satisfies
∀g ∈ CT ∀h ∈ T [(γ(g))(h) > 0 → h ∈ ρT (g)] (13)

For g ∈ CT and h ∈ ρT we define

(γ(g))(h) := w(g, h) :=
∏

k ∈ H,x ∈ X
kx v h

(ϕ(gk))(x) (14)

Note that w(g, h) is the probability that we can reach state h from g according to model ϕ.

6 Proposed policy

In this section we will propose a policy to be used by a learning subject that is based on the
counterfactual model derived from the models of observed and expected data as described
above. We do not make the claim that this model is optimal in any sense. We do claim
that it achieves the following goals. It explores an unknown environment without the need
for external evaluations of its actions. If the environment is generated by an element ψ∗

of M (the so-called M-closed case) and ψ∗ meets some reasonable conditions, then, with
probability one, this policy will cause ψ to converge to an model that is equivalent to ψ∗.
For each event, the necessary updates on the data structures necessary to choose the actions
according to this policy can be done in a time that is sub-linear in the number of events.

Let ϕ : T → WX be the current model of observed data so far. Let ψ : T ′ → WX for some
T ′ ⊆ T be the current model of expected data so far. Let γϕ : CT → T be the counterfactual
model corresponding to ϕ. We define:

TR := {xr ∈ R∗X | x ∈ X, r ∈ E∗ | ∃y ∈ Y [ry ∈ T ]} (15)

Note that TR ∈ T ′ (See Equation 5.)

We propose to let a learning subject use a policy π : Tr →WY that is defined as follows. Let
h ∈ T determine t and n as in Section 4. Define a utility function u ∈ WT by

u(h) = w(ε, h)t−1 · n (16)
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(See Equation 14 for the definition of w.) Let r ∈ TR and let

Cr := {〈g, h〉 ∈ E∗ ×H | r wE g ∧ gh ∈ T} (17)

Calculate for each action y the expected reachable utility

f(y) :=
∑

〈g, h〉 ∈ Cr

y v h

u(h) · (γϕ(g))(h) (18)

Define π(r) as pf , the normalization of f (See Equation 3).
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