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Abstract

The algorithmic method of inductive inference
that Ray Solomonoff proposes in (Solomonoff,
1964) is not interactive. Marcus Hutter de-
fines how to add interactivity to the inductive
method based on the assumption that the en-
vironment supplies a utility function (Hutter,
2000). This paper discusses the possibility of a
framework based on a utility function that is in-
ternal to the learning subject and independent
of the environment. The internal utility func-
tion should measure the amount of information
extracted from the interaction with the environ-
ment. The Minimum Description Length prin-
ciple (MDL) proposed by Jorma Rissanen (Ris-
sanen, 1989) supplies a framework that clearly
separates a statistical model that represents the
extracted information from the exact represen-
tation of the data. Algorithmic Statistics (Gács
et al., 2001) should be able to bridge the gap be-
tween the algorithmic approach of Solomonoff
and the statistical approach of Rissanen.

1 Introduction

Learning is not only about predicting the right
answer to questions. The hard part of learning
is often to ask the right questions. See also (van
Maanen, 2002). Marcus Hutter defines how to
add interactivity to the inductive method based
on the assumption that the environment sup-
plies a utility function. His reason for this set-
up is that (Hutter, 2000)

eventually we (humans) will be the en-
vironment with which the system will
communicate and we want to dictate
what is good and what is wrong, not
the other way round.

If the context would be control theory this
would be a reasonable assumption, but the con-

text is artificial intelligence. Intelligent systems
determine their own priorities. Even when the
environment is highly optimised for teaching the
teachers have to apply techniques that try to
align the learning goals of the pupils with the
teaching goals of the school. Even then, many
students aim for average grades that let them
pass major milestones with a more or less safe
margin rather than maximal grades. They op-
timise a function that differs significantly from
the externally supplied utility function.

What would be a more natural utility func-
tion for a learning system than its own learning
rate? A learning system can be seen as a system
that communicates with its environment and
builds an internal model of that environment.
The growth of that model, or the complexity
of it, can be used as an exact measure for the
learning rate of the learning system. When the
results on Algorithmic Statistics (Gács et al.,
2001) are applied to a slightly modified version
of Hutters model called AIξ1 we can expect to
find that it is possible to define a universal au-
tonomous learning system.

2 Example

We will introduce an example of an environ-
ment that is stripped of all real-world complex-
ities. This example is used in later sections to
illustrate relevant aspects of formal models of
learning. We use some abstract terminology to
remind us where we would like to apply our re-
sults. With the subject we mean the person,
animal or hypothetical device that learns. With
the environment we mean the real or simulated
environment that can be accessed by the sub-
ject. With the interface we mean the sensors
and actors with which the subject interacts with

1AIξ is pronounced ‘aixi’ and can be written as ‘AIXI’
when Greek letters are not available.



the environment. The interaction between the
subject and the environment results can be seen
as a sequence of events. Each event is composed
of an action that is performed by the subject
and a response from the environment. We as-
sume that actions as well as responses can be
finitely encoded.

We will closely follow the notation used by
Hutter. See (Hutter, 2000) for details and dis-
cussion. Without loss of generality we can
assume that there are prefix-free sets of bi-
nary strings X and Y that encode responses
and actions respectively. For our example we
restrict ourselves to single bits: X = Y =
B

1 = B = {0, 1}. Strings over X are de-
noted s = x1x2 · · ·xn with xk ∈ X. l(s) =
l(x1) + l(x2) + · · · + l(xn) is the length of s.
Analogous definitions hold for yk ∈ Y . The
elements of X and Y are called words rather
than letters. The string s = y1x1 · · · ynxn repre-
sents action/response pairs in chronological or-
der. Due to the prefix property of X and Y , s
can be uniquely separated into words. We fur-
ther use the following abbreviations: ε is the
empty string, xn:m = xnxn+1 · · ·xm−1xm for
n ≤ m and ε otherwise. x<n = x1:n−1. Analo-
gous abbreviations are used for y. Furthermore
we use yxn = ynxn, yxn:m = yxn · · · yxm and so
on. We will disregard the encoding process and
refer to yxk as the k-th event. The string yx<k
represents the entire history of events up to, but
not including, the k-th iteration.

The example environment that is used in
this paper acts like a Markov Decision Pro-
cess (MDP). The behavior of the process is in-
formally presented in the following diagram.
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Each circle in the diagram represents a possible
state of the environment. The word that the
environment produces when it enters a state is
printed inside the circle. A wide arrow is origi-
nating from each state for every action that the
subject can perform. The word corresponding
to the action is inscribed in the arrow. The thin

arrows originating from each action arrow rep-
resent possible state transitions of the environ-
ment. Each state transition is labelled with a
probability. The sum of the probabilities of the
state transitions that originate from an action
arrow is unity.

The essence of this example is that it has two
modes: stationary and alternating, and that the
subject can switch between these modes at will.
The subject will see only half of the environment
if it chooses the same action for every cycle. If
it acts randomly it will be hard to spot the reg-
ularities. Therefore we expect that a learning
subject will exhibit some interesting behavior
in this environment.

For a more formal treatment of this exam-
ple we introduce a notation for probabilities
of responses that is similar to Hutter’s. Let
t ∈ (Y × X)∗, y ∈ Y , x ∈ X, and p ∈ R,
then q(t y x) = p means that for all sequences of
events s the probability that the next response
is x, given that the history is s t y, equals p. An
underlined variable x represents a variable and
other non-underlined variables represent condi-
tions. The value is only defined when the condi-
tions are sufficient to determine the probability.
The response has to be independent of events
that are more than n cycles in the past, where
n is the number of cycles in t. As the state of
the environment depends only on the last few
words of the history, it can be formally defined
as follows:

q(0 1) = 0
q(001 1) = 0.5
q(101 1) = 1
q(111 1) = 0

The fact that the environment happens to act
like a Markov Decision Process with a finite
number of states is an artefact of the example.
It does not imply any general constraints on the
environment or the models that the subject con-
structs of the environment. For example, the
example could be refined with a rule that de-
pends on more data that gives more information
about q(001 1). The new rule could depend on
the last response on a 1-action and the number
of preceding 00 events, e.g.,

q(10 02n 001 1) = 1/2 + 2−n−2

q(11 02n 001 1) = 1/2− 2−n−2



for n ∈ N, where 02n represents a string of
n times the 00 event. That would rule out a
finite number of states for the process that gen-
erates the environment. The refinement could
be done in such a way that, for simple strate-
gies to generate the actions, the interaction with
the original MDP would have the same station-
ary distribution as the interaction with the more
complex model.

Analogous to probabilities of responses we in-
troduce probabilities of actions: p(yx<kyk) is
the probability that the k-th action is xk given
that the history ends with yx<k. If we look
at the unmodified example we can analyse its
behavior for three simple ways to choose the
actions: p(ε1) = 0 (always zero), p(ε1) = 1 (al-
ways one), and p(ε1) = 1/2. In the first case the
interaction will consist of a constant sequence of
pairs of zeros. In the second case the interaction
will look like:

· · · 10 11 10 11 10 11 · · ·

In the third case the interaction can be de-
scribed as a Markov Chain over events with the
following stationary distribution:

event 00 01 10 11
probability 1/2 0 1/4 1/4

3 The algorithmic approach

Ray Solomonoff proposes to use the probability
that a universal Turing machine reproduces the
history as basis for establishing the likelihood of
new data given the history (Solomonoff, 1964).
This corresponds to Bayesian prediction using
all effectively enumerable probability distribu-
tions over infinite strings as a hypotheses class
using a universal prior. The prior is universal in
the sense that it attributes a positive probability
to all hypotheses in the class and that it dom-
inates all possible effectively enumerable priors
save for a multiplicative constant that depends
on the pair of priors, but not on the hypotheses.

Marcus Hutter adds actions to this frame-
work. In his AIξ model a learning system, a
subject in our terminology, has to act upon its
model of the environment. The model of the en-
vironment and the strategy for choosing actions
are almost symmetrically described by condi-
tional probability distributions over histories.
The AIξ model is defined in terms of chronolog-
ical Turing machines instead of the monotonous

Turing machines used by Solomonoff. Chrono-
logical Turing machines alternately read one
word from a one-way input-tape and write one
word to a one-way output-tape. The words are
chosen from prefix-free sets as described in Sec-
tion 2. The symmetry between the model of
the environment and the strategy for generat-
ing actions is broken in the AIξ model because
only the output of the environment gets spe-
cial treatment. It is split in an credit part
and a residue. The credit defines the util-
ity function that the subject has to optimise.
Like Solomonoff the AIξ model fixes one univer-
sal chronological Turing machine U as a refer-
ence2. Every chronological Turing machine M
that we would like to consider as a candidate
for a model of the environment can be simu-
lated on U . In other words: there exists a pro-
gram qM such that U(qMy<k) = M(y<k). The
function ξ(qM ) = 2−l(qM ) can be interpreted as
the probability that U will use M to simulate
the environment. Using ξ as a universal prior
distribution over possible models of the envi-
ronment and a utility function Ckmk(p, q) the
AIξ model defines the optimal action ẏk as

ẏk = maxarg
yk

max
p∈Pk(yk)

∑
q∈Qk

ξ(q) · Ckmk(p, q)

where Pk(yk) = {p ∈ B∗ | U(p ẋ<k) = ẏ<kyk}
and Qk = {q ∈ B∗ | U(q ẏ<k) = ẋ<k}. The dots
above x<y and y<k indicate that these are actual
values that have been exchanged between the
subject and the environment. The utility func-
tion Ckmk(p, q) computes the credits that the
subject would receive on cycles k to mk when it
uses strategy p and when q is a perfectly accu-
rate model of the environment. The AIξ model
converges to models where ξ(q) is replaced by
another recursively enumerable prior on (pro-
grams for) chronological Turing machines. We
need knowledge about the environment for a
better prior as well as for an optimal univer-
sal Turing machine. Given that we are study-
ing learning, i.e., processes that increase knowl-
edge, all prior knowledge is dangerous. We
could forget to measure it beforehand and count
it as obtained by the subject afterwards. Prior

2The prefix-free set that defines the words on the in-
put tape has to be extended to allow for a program to
be read before or together with the first word of the sim-
ulated input



knowledge can also reduce a potential learning
situation to a mere search for some global maxi-
mum. Therefore we cannot expect subjects that
have to learn about the environment while in-
teracting with it to do much better than the
AIξ model

Application to the example
To apply Hutter’s approach to the example we
need to specify a credit function for the output
words that the environment can produce. As
X = B every possible credit function is equiva-
lent with either C(x) = x or C̄(x) = 1− x.

If the credit function is C(x) = x a subject
that uses the AIξ model will find out quickly
that the best strategy is to always choose the
1-action. Likewise, if the credit function is
C̄(x) = 1−x a subject that uses the AIξ model
will find out quickly that the best strategy is
to always choose the 0-action. In either case
no further information is gathered about the
transitions between the left and the right half
of the state diagram. The difference between
the simple example and the extended example
will never become apparent in the history. If
we want to ‘teach’ the complete environment
to the subject, we need to extend it in such a
way that the subject can ‘tell’ the environment
what its model is, i.e., include qM in yk. Then
we would have to let the environment evaluate
the accuracy of M and return a credit that is
based on both the accuracy of M and the length
of qM . That is quite a burden to place on the
environment.

4 The Minimum Description Length
approach

Rissanen’s Minimum Description Length prin-
ciple (MDL) is explicitly formulated in terms of
hypotheses (Rissanen, 1989). The process of re-
vising evaluations of hypotheses is clearly a form
of inference. MDL is based on reproducing a se-
quence of symbols exactly, just like Solomonoff’s
inductive inference procedure. MDL assumes
that we are given a hypotheses class C. Every
hypothesis in the given class is a distribution
over all infinite sequences of symbols from our
alphabet. MDL also requires that every hypoth-
esis H in the hypotheses class can be finitely
described by a code cH .

For learning subjects the hypotheses are func-
tions that compute the conditional probability

of responses of the environment given actions
by the subject. Using the Kraft inequality (Li
and Vitányi, 1993) we can construct an encod-
ing eH,y<k for finite sequences of symbols such
that for each finite history yx<k we have

l(eH,y<k(x<k)) ≈ − log2H(y1x1 · · · yk−1xk−1)

Now for each hypothesis H a transcription of
the symbols that were exchanged on the inter-
face yx<k can be described by concatenating cH ,
y<k and eH(yx<k). According to MDL the best
hypothesis is the hypothesis that minimizes the
length of this description. As yk is given and
thus fixed we can therefore minimize

l(cH) + l(eH,y<k(x<k))

Application to the example
We could take all Markov Decision Processes
with finitely many states and probabilities that
are rational numbers as our model class C. Each
model can be described as follows:

n

xs1p0,s1,s2 · · · p0,s1,sn p1,s1,s2 · · · p1,s1,sn

...
xsnp0,sn,s1 · · · p0,sn,sn−1 p1,sn,s1 · · · p1,sn,sn−1

where n is the number of states, xsi is the re-
sponse of the process when entering state si, and
pyt,si,sj is the probability of a state change to sj
given state si and action yt. The probability
that the state will not change given an action
can be found by subtracting the probabilities of
the non-trivial state changes from unity.

A simple way to specify a number n ∈ N in
a binary alphabet in such a way that the set of
codes of numbers is prefix-free is to precede the
binary notation of n+ 1 with blog2 n+ 1c times
a 0 bit. As the binary representation of a non-
zero natural number always starts with a one bit
we can recover a number from a string by the
following procedure. First we count the leading
zeros and read that many digits after the lead-
ing one bit. Then we decode the binary sting
that consists of all the bits we read, the initial
zeros don’t harm, and subtract one. Fractions
are encoded by specifying numerator and de-
nominator.



If we follow these rules for the generating
model of the example we have three states and
twelve fractions to encode. The number three
is encoded in five bits. Six of the fractions are
zero and are encoded in two bits each. The
other fractions are encoded in six bits each. The
length of the model totals 5 + (1 + 2× 2 + 2×
6) + 2× (1 + 2× (2 + 6)) = 56 bits. The trivial
model requires 3 + 2(1 + 2 × 1 × 6) = 29 bits.
If the actions are determined by coin tosses, the
generation model can be expected to be better
than the trivial model after n action/response
pairs, where:

56 +
3
4
n < 29 + n

So n > 108. It should be clear much earlier that
choosing 1 actions leads to an earlier expected
model growth. This can be seen by evaluat-
ing models that compress the data (temporar-
ily disregarding the length of the encoding of
the model) and evaluating the probability that
such a model will become the MDL model given
that it fits and given a potential strategy. If, for
example, it is established that xk is always zero
when yk is zero when k = 10, then the gener-
ating model becomes a candidate for the MDL
hypothesis for k = 66 if all actions are chosen
to be 1.

After the discovery the subject will continue
to search for possible extensions of the model.
The subject will alternate between sequences of
zeros and ones of varying length to search to
explore q(001x). If the example is extended as
described in Section 2 it will find longer and
longer finite truncations of the infinite Markov
Decision Process and the model that the subject
has of the environment will converge to the true
model.

The most important aspect of the algorith-
mic approach that is lacking in the MDL ap-
proach is universality. So far we have discussed
a hypotheses class that contains models that are
arbitrarily close to the ‘true’ behavior of the
environment. That means that the hypothe-
ses class contains hidden information about the
environment. We would rather have the sub-
ject learn the fact that the environment acts
like a Markov Decision Process by itself. Anal-
ogous to the algorithmic approach the hypothe-
ses class should consist of all recursively enu-

merable semi-measures on the set of infinite bi-
nary strings. With a hypotheses class that con-
tains all regularities that can be effectively de-
scribed we could plug MDL into Hutter’s frame-
work and define a universal autonomous learn-
ing system.

5 Algorithmic statistics

In the algorithmic approach the subject eval-
uates descriptions of the total known history
of the interaction with its environment. The
lengths of these descriptions are used to deter-
mine the relative predictive value of the algo-
rithmic processes behind those descriptions. In
the MDL approach descriptions of the history
consist of two parts: a description of a hypoth-
esis and a description of the history given this
hypothesis. This separation of the description
in two parts is relevant, because we want to use
the length of the first part to guide the actions of
the subject. Murray Gell-Mann and Seth LLoyd
discuss a similar separation of a description of
a finite binary string into two parts (Gell-Mann
and LLoyd, 1996). The first part of their de-
scription defines a set of strings that describes
the regularities in the given string. This set is
chosen in such a way that the given string is a
‘typical’ member of the set. The second part
of the description pinpoints given the string in
this set. They call the length of a smallest de-
scription of a string its total information and
the length of a smallest description of a set,
such that the string is a typical member of that
set, its effective complexity. In their conclusion
Gell-Mann and LLoyd even make the connec-
tion to learning systems. Given our observation
about the MDL approach we come to a different
analysis of the importance of these information
measures to learning. A small total informa-
tion just means that there are regularities to be
found in the history, but if the effective com-
plexity rises as words are added to the history
the subject learns in the sense that new regular-
ities are added to its description of the environ-
ment. Therefore the growth rate of the effective
complexity of the history would be a good mea-
sure for the learning rate of the subject.

In their article about algorithmic statistics
Péter Gács, John Tromp, and Paul Vitányi
analyse the relation between data and models
in depth (Gács et al., 2001). Although their



conclusions about the practical applicability of
the universal information measures they found
are sobering, it would still be worthwhile to in-
vestigate whether it is possible to avoid uncom-
putability limits. This could be done, for exam-
ple, by introducing a cut-off on the computa-
tion time necessary to produce the history from
its description. The universal information mea-
sures can also be used to prove bounds on the
learning speed of subjects that use randomness
to sample the hypotheses space that might be
hard to prove otherwise.

6 Conclusion

To remove the external utility function from
Hutter’s AIξ model while preserving its univer-
sality we can take the following steps.

1. Use algorithmic statistics to define a uni-
versal form of MDL.

2. Use universal MDL models instead of the
raw descriptions of the history.

3. Evaluate actions based on expected model
growth instead of the externally supplied
utility function.

Further research

The steps above should be formalized. The re-
sulting formal model should be studied to find
bounds on learning speed and subjectiveness.
To determine the subjectiveness of the model
we must ask the question: how far can universal
subjects based on different universal machines
be apart when interacting with the same envi-
ronment? This question is especially interesting
because we need to define what it means for two
subjects to interact with the same environment.
As the subjects act differently they might learn
different things about the environment and face
entirely different questions rather quickly. An-
other important direction would be to construct
practicable algorithms that approach the uni-
versal model as closely as possible.
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