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Abstract

This paper presents a model class that is well suited to represent Markov Decision Processes.
Interaction history tree models can be easily adapted by a learning subject to model both
observed behavior and expected behavior of its environment.

1 Introduction

Markov Decision Processes are powerful tools to model interactive behavior. The example
that is presented in [Maa02] shows that they are powerful enough to represent environments
with an interesting exploration/exploitation trade-off. This paper presents a model class
that is well suited to represent Markov Decision processes: interaction history tree models,
or tree models for short. These models are defined in such a way that they can be refined
incrementally. As a result a learning subject that uses tree models can efficiently update its
models of both observed behavior and expected behavior rather than having to search a huge
space of candidate models after each atomic interaction. A measure for the size of tree models
is presented that is compatible with the idea of small refinements: a small refinement leads
to a small change of the size of a model. With the help of the Minimum Description Length
principle [Ris89] this measure can be used by a learning subject that uses tree models to
model expected behavior of the environment as well as to choose exploratory actions.

The framework to describe the interaction between the learning subject and its environment
is borrowed from Hutter [Hut00]. The model class itself is based on ideas from [WRF95].

First we will define interaction history tree models. Then we will see how observed behavior
can be modeled with tree models. After that we will investigate how expected behavior
can be modeled. This includes the definition of a measure of the size of tree models. The
next two sections discuss two technical issues: updating the structure of a tree model for
observed behavior and efficient tracking of the MDL model for expected behavior. A summary
concludes this paper.
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2 Definition of tree models

We use the same terminology as in [Maa02]. To summarize: X and Y are prefix-free subsets
of B∗. (See [LV92] for an account of prefix-free sets.) The set X lists the input words that
the learning subject can expect to receive from its environment. The set Y lists the output
words that the learning subject can produce. Output words are also called actions. We
also use a slightly adapted version of Hutter’s notation [Hut00] for conditional probabilities:
p(yn−mxn−m · · · ynxn) denotes the probability that the last input word will be xn given that
the preceding words were yn−mxn−m · · · yn (Hutter requires that m = n).

Additionally we define for sets A,B ⊆ B∗ the concatenation AB := {ab | a ∈ A, b ∈ B}.
Furthermore we define A0 := ε, An+1 := AnA, and A∗ := ∪n∈NA

n. In particular we define
the set of events E := Y X, so instead of yx ∈ Y X we will write e ∈ E. Note that E is
prefix-free.

We are interested in the probability distribution over X given a state that is a function of
the last words of the interaction between the learning subject and its environment up to and
including the last action of the subject. Therefore we define the set of interaction histories,
or histories for short, as H := E∗Y . For each h ∈ H and g ∈ E∗ we call gh an extension
of h. If g 6= ε then we call gh a proper extension of h. If g ∈ E we call gh an immediate
extension of h. Note that we extend histories to the left to indicate that longer histories tell
us something about the more distant past.

Our models will be based on trees of interaction histories. An interaction history tree is a
collection T of histories that satisfies the following conditions:

• T must contain at least one element
• T must be finite
• For each history in T that can be written as a concatenation gh, where g ∈ E∗ and h ∈

H, the suffix h must also be included in T .

Formally:

T := {T ⊆ H | 1 ≤ |T | < ω ∧ ∀g ∈ E∗, h ∈ H[gh ∈ T → h ∈ T ]} (1)

Each interaction history tree model is a function that has an element of T as its domain. The
range of a tree model is the set of finite distributions over X. A finite distribution over X is
defined by a function from X to N that only assumes a non-zero value on a finite subset of its
domain. If there is at least one domain element for which the defining function assumes a non-
zero value, then the finite distribution is well-defined. The relation between the probabilities
of the elements of X and the defining function f of a well-defined finite distribution is given
by:

pf (x) :=
f(x)∑

w∈X
f(w)

(2)

This value is well defined because the sum in the denominator is finite and non-zero. There is
exactly one finite distribution that is not well-defined. It corresponds to the defining function
that is zero everywhere on its domain. We will use this trivial finite distribution, denoted ∅,
as an intermediate value in Section 3.
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We define the set of (defining functions of) finite distributions as:

D :=
{
f : X → N

∣∣∣ |{x ∈ X | f(x) 6= 0}| < ω
}

(3)

Now we are ready to give a formal definition of the class of interaction tree models:

M := {ψ : T → D | T ∈ T } (4)

A tree model ψ ∈M is well-defined if and only if ψ(h) is well defined for every h ∈ Dom(ψ).

We introduce the notation ψh for ψ(h) because it enables us to write ψh(x) to mean f(x)
where f = ψ(h). We extend this notation to all h ∈ H as follows. For each combination of
h ∈ H and e ∈ E such that h ∈ Dom(ψ) but eh 6∈ Dom(ψ), for each g ∈ E∗, and for each
x ∈ X we define ψgeh := ψh. For each y ∈ Y such that y 6∈ Dom(ψ) and for each g ∈ E∗ we
define ψgy := f where f ∈ D is defined by:

f(x) :=
∑
y∈Y

ψy(x) (5)

For a well-defined model ψ ∈M and a history h ∈ H we define:

pψ(hx) := pψ(h)(x) (6)

Note that if ψ ∈ M is well-defined, then for each h ∈ H the function x 7→ pψ(hx) is a
probability distribution over X.

We will use these models in two ways: (1) to model observed behavior, and (2) to model
expectations of future behavior.

3 Observed behavior

Each time when the learning subject receives a new input word x ∈ X it revises its model of
observed behavior. There are two aspects to modeling observed behavior: (1) updating the
domain of the model T , and (2) updating the finite distributions ψ(h). The first aspect is
quite difficult to manage. We would like to gather data about longer and longer sequences of
history, but we would also like to minimize the space complexity of the model. At least we
have to include the last action y of the learning subject in the domain of the model before the
finite distributions can be updated. It seems reasonable to place a limit on the growth of the
tree and choose a rule-of-thumb to determine where to extend the tree when allowed. Possible
strategies for updating the tree are discussed in Section 5. When we add a new element to
the domain of the model we initially assign the finite distribution that is zero everywhere on
its domain as its value. We have to make sure to update the values of the new elements to
get a well-defined model again.

The second aspect is much simpler. Suppose that ψ ∈ M is our current model (after updat-
ing T ) and that d ∈ H is the data that describes the behavior between the learning system
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and its environment so far, up to but not including the new word x ∈ X, then our next model
is defined by:

ψ′h(x) := ψh(x) + 1 (7)

for each h ∈ Dom(ψ) for which there is a g ∈ E∗ with gh = d; and:

ψ′h(w) := ψh(w) (8)

for each combination of h ∈ Dom(ψ) and w ∈ X that is not covered by the previous definition.

If a learning subject starts from a model ψ with Dom(ψ) = {y0} and it updates this model
repeatedly from observed data extending the domain of the model every now and then, the
resulting models will always be members of a subclass of M:

O :=
{
ψ ∈M

∣∣∣ ∀h ∈ H,x ∈ X
[
ψh(x) ≥

∑
e∈E

ψeh(x)
]}

(9)

4 Expectations of future behavior

To turn a model of observed behavior into expectations of future behavior we employ the
Minimum Description Length principle (MDL) [Ris89]. To this end we define the description
length DL(ψ) of a model ψ ∈M.

First we define how to describe T = Dom(ψ). Assume we have a standard enumeration
{h1, h2, . . .} = H of histories, such that suffixes are listed earlier in the enumeration than
histories that extend further in the past. For every element h in the enumeration that is
included in T we describe the immediate extensions of h in T as follows. First we compute a
threshold that is only dependent on the size of E: a :=

⌈
|E|

log2 |E|
− 1

⌉
. Let n be the number

of immediate extensions of h.

• If a ≤ n ≤ |E| − a then we write a 0 and for each element of e ∈ E a 1 if eh ∈ T
and a 0 otherwise. This is the bit vector that encodes the subset of E that defines the
immediate extensions of h in T .

• If n < a then we write a 1 followed by a 0, then n using dlog a − 1e bits and then a
run-length encoded version of the bit vector that encodes the subset of E that defines
the immediate extensions of h in T using ndlog |E|e bits.

• If n > |E| − a then we write a 1 followed by a 1, then |E| −n using dlog a− 1e bits and
then a run-length encoded version of the complement of the bit vector that encodes the
subset of E that defines the immediate extensions of h in T using (|E|−n) dlog |E|e bits.

If X is not finite, then we write a prefix-free encoded upper limit, in a standard enumeration
of X, of the words in X that are mapped to a non-zero value by any ψh.

Then we write the description of ψh for every h ∈ T . If h can be written as eh′, where e ∈ E
and h′ ∈ H, and ∀x ∈ X[ψh(x) = ψh′(x)] then we write a 0. Otherwise write a 1 followed by
the prefix-free encodings of the values ψh(x) in the order of a standard enumeration of X (up
to the uniform upper limit that was mentioned in the previous paragraph, if applicable).
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Now let ψ ∈ O be a model of observed behavior and let ϕ ∈M be a model of the expectations
of behavior. The description length of the data in ψ given expectations ϕ is defined as:

DL(ψ | ϕ) :=
∑

h∈Dom(ψ)

DL(δh | ϕh) (10)

where, for each h ∈ Dom(ψ), δh ∈ D such that for all x ∈ X

δh(x) := ψh(x)−
∑

e∈E,eh∈Dom(ψ)

ψeh(x) (11)

and where
DL(δh | ϕh) :=

∑
x∈X

−δh(x) log2 pϕh
(x) (12)

The value DL(ψ | ϕ) can be infinity, if δh(x) is non-zero and pϕh
(x) is zero for one or more

combinations of h and x. If δh(x) and pϕh
(x) are both zero for a particular combination of

h and x, then −δh(x) log2 pϕh
(x) is defined to be zero.

It can be seen that DL(ψ | ϕ) is the amount of bits necessary to describe all data d that was
used to compile ψ using ϕ as a compression scheme.

Given observed behavior ψ ∈ M, the best model of expectations of future behavior in the
MDL sense is:

ϕ̌ := arg min
ϕ∈M

{DL(ϕ) + DL(ψ | ϕ)} (13)

The model ϕ̌ can be expected to perform well on a wide range of loss functions [Grü98].

5 Strategies for updating the tree

In Section 3 we saw that the learning subject needs a strategy for updating the tree that
defines the structure of the model. One extreme strategy is just to make sure that the latest
output word is included in the tree. The obvious problem with this strategy is that only
direct cause/effect information is stored in the model. All information about the influence of
past behavior is ignored. At the other extreme we have the strategy to always extend the
tree such that the complete history of all interactions is an element of the tree. In this case
no information is lost, but at a huge cost. The model of the observed behavior will be much
larger than a linear description of that behavior. For the purposes of a learning subject it is
not needed to keep all this data around. It follows directly from the MDL principle that the
MDL model will be much smaller than a linear description of the behavior.

The author uses the following strategy in an experimental setup. For convenience, assume
that X is finite. For f ∈ D we define

DL(f) :=
∑
x∈X

‖f(x)‖∗ (14)
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where ‖n‖∗ is the length of the prefix-free encoding of n. We also reuse Equation 12 that
defines DL(f | f ′) where f, f ′ ∈ D.

Let ψ ∈M be the current model of observed behavior, let T = Dom(ψ), let d ∈ H describe the
interaction with the environment so far, and let g ∈ E∗, e ∈ E, and h ∈ H such that d = geh
with h ∈ T and eh 6∈ T . Let

f̌ := arg min
f∈D

{DL(f) + DL(ψh | f)} (15)

If
∑

x∈X ψh(x) `(x) > ϑDL(f̌) for a suitable threshold ϑ (the author uses ϑ = 3) then eh is
added to T .

6 Tracking the MDL model of expectations

[This section still needs work]

Let ψ ∈M be the current model of observed behavior and let ϕ ∈M be the current model of
expected behavior. Let S := Dom(ψ) and let T = Dom(ϕ). Let d ∈ H describe the interaction
with the environment so far. Determine g ∈ E∗, e ∈ E, and h ∈ T such that d = geh and
eh 6∈ T . First, we recalculate for each combination g ∈ E∗ and h′ ∈ H such that h = gh′ the
optimal ϕh′ . Then, for every combination of g, g′ ∈ E∗ such that d = g g′eh with g′eh ∈ S,
we can calculate the effect of adding g′eh to the domain of ϕ on DL(ϕ) and DL(ψ | ϕ) using
just the finite distributions ψh, ψe′h with e′ ∈ E and ψg′′eh with g′′ ∈ E∗ such that there
is a g′′′ ∈ E∗ with g′ = g′′′ g′′. If there is a combination for which the resulting effect is a
decrease of DL(ϕ) + DL(ψ | ϕ) we add the string g′eh that encodes the smallest amount of
events to the domain of ϕ. We repeat adding values to the domain of ϕ until there is no
longer a combination g, g′ for which adding g′eh decreases the sum of the description length
of the model of expected behavior and the description length of the data that describes the
interactions so far given that model.

7 Summary and future work

Tree models as defined in Section 2 can be used efficiently by a learning subject to model
observed behavior of its environment. It is unsatisfactory, however, that the last strategy
that was discussed in section 5 needs an arbitrary threshold parameter. We would like to see
a less arbitrary method to determine whether a finite distribution is mature enough to look
for more information in longer histories that share that state.

Tree models can also be used efficiently by a learning subject to track the MDL model
of expected behavior of the environment. The measurement of the description lengths is
straightforward as described in Section 4. The model can be refined incrementally as described
in Section 6.
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The next step is to follow the reasoning of [Maa02] and define a method that produces output
words for the learning subject that optimize the growth of DL(ϕ̌), the description length of
the MDL model for expected behavior of the environment.
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